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ABSTRACT: The 2d shallow water equations can be used only for cases where the vertical velocity is
negligible and the hydrostatic pressure distribution is not violated. The presented method allows vertical
velocities and introduces additional pressure terms. A further improvement is achieved for the depth averaged
horizontal velocities, which are replaced by a linear distribution. The derivation of the additional equations is

outlined and some examples are given.

1 INTRODUCTION

The 2-dimensional shallow water equations are not
applicable for cases where the vertical velocity can
not be neglected and the hydrostatic pressure
distribution assumption is too stringent. A new
method, the depth averaged and momentum
equations, as derived by Steffler & Jin (1993) for the
1-dimensional case, is extended to 2 dimensions and
for practical purpose somewhat simplified. First
numerical examples for the 1d case are presented by
Khan & Steffler (1996). The new approach allows
computations where vertical velocities play an
important role, without extending to the full 3d
Navier-Stokes equations with free surface.
Compared to a 3d calculation the number of
elements therefore can be kept relatively small, and
an additional nonlinearity caused by the free surface
does not occur.

However the new approach increases the number
of unknowns from 3 to 10 compared to the classical
shallow water equations and therefore needs
reasonable computer resources. Resolution of further
flow details is achieved by introducing these
additional unknowns.

2 VERTICALLY AVERAGED EQUATIONS

The depth-averaged equations are based on the
fundamental assumption of a hydrostatic pressure
distribution.

In addition to the 3 shallow water equations,
extended with the terms for the additional
unknowns, new equations have to be considered,
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since the number of variables increases. The bed and
surface kinematic conditions form two of these
equations. The vertical momentum is another
equation to be introduced. Finally, the moment of
the continuity and of the three momentum equations
are formulated. They can be derived by vertically
averaging the Reynolds equations after multiplying
through by the vertical coordinate z and subtracting
the mean elevation times the vertically averaged
equations. This derivation corresponds to the first
moment about the mid-depth point. The 10
independent equations are solved with the FEM
using a toolbox developed by P. Rutschmann (1994).

Instead of one depth averaged velocity for each
horizontal direction, a linear distribution is assumed
and therefore 2 additional unknowns are introduced.
The hydrostatic pressure distribution assumption of
the classical shallow water equations is no longer
applied. An excess bottom pressure and a mid-depth
pressure factor allow the simulation of a quadratic
pressure distribution over the water depth in addition
to the hydrostatic pressure. For the vertical velocities
a quadratic formulation is implemented, using the
bottom and the surface wvertical velocities as
unknowns, as well as an additional quadratic factor
describing the mid-depth unlinearity.

The definition of the parameters is given in Figure
1, the x-y direction forming the horizontal frame
with the corresponding velocities u, resp. v. The
vertical direction z with the velocity w and the
indices h for values at the surface, resp. b for the
bottom. ¢ and 1 indicating normal and shear stresses
respectively. The mean value of z is defined as:

Z=z,,+§ (1)
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Figure 1: Definition sketch.

Figure 2: Horizontal Velocity Distribution.

The basic assumption of the method are described in
the following section. Instead of using the depth
averaged velocity, a linear, zero mean distribution,
as shown in Figure 2, is assumed for the two
horizontal velocities. The velocity u is given by the
depth averaged value u,, and an excess velocity u, at
the surface.

u=uy+u(2n-1) V)
where the nondimensional vertical coordinate 7 is

=2, (3)

defined by =

For the y direction the same type of horizontal
velocity distribution is assumed, introducing the
mean value v, and the velocity difference, from the
mean value, at the surface v :
v=v,+1,(2n-1) 4
Although this linear distribution is an improvement
compared with the depth averaged equation, a slip
velocity at the bed is still allowed. There could be
more accurate methods to dissolve the horizontal
velocity terms, but the improvement is not found in
a detailed resolution within the thin boundary layer,
but in the overall behavior. ,
The vertical velocity distribution w is
approximated by a quadratic variation. The
kinematic conditions at the bed and the surface in
addition to the moment of continuity equation
provide the essential informations:

w=w,(1=n)+w,dn(l - n)+ w, T &)
Figure 3 shows a plot of the vertical velocity
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Figure 4: Pressure Distribution,

distribution. w, and w, indicate the vertical
velocities at the bottom, resp. at the surface, whereas
wa is the vertical velocity at the mid depth in excess
to the average of wy, and wy,
The final equations are formed in terms of the mean
vertical velocity w instead of w,, since the depth
averaging process results in depth averaged values.
The quadratic pressure distribution, as shown in
Figure 4, is formed of a linear pressure parameter p,
at the bed, in excess to the hydrostatic pressure
distribution, and a quadratic mid depth fraction Dy g
is the gravitational factor and p the density of the
water.

p=(pgh+ p,)1-n)+ p,4n(l—n) (6)

The kinematic boundary condition at the bottom is
easy to fulfill, because the bottom is assumed to be
rigid:

(uo"ul)%"*'(vo*vl)%yb‘—wb:o 7
The kinematic boundary condition at the surface is
described by the fact, that the flow through the
surface is zero. Applying the velocity definitions
given in equations (2) and (4), results in the
following equation:

éﬁ+(u0+ul)(@+ﬁ)+

o & ox ®
(vo +v, )(—g—;l-l-%j—wh =0

Starting with the Reynolds equations (Mass, x-, y-
and z-Momentum)

LN )

o d &
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3w duw  odvw sz

—t
c?t o o
» (12)

1lop, ( ey Jr, , 9o, ) .
p o pL&x &
Depth averaging the mass conservation equation 9,
embedding the previously given definitions in
equations (2) and (4), yields to:

oh Ohu, ahvo -0 (13)

—

o ok 8y
This continuity equation is similar to the one
resulting out of the depth averaging process, since
the zero mean distribution of u, resp. v, leads to
unchanged expressions.

Depth averaging of the momentum equations
results with the mean stress quantities of o and 7 in
the x, resp. y-momentum equation:

Gy g 1ud Fuyy, V| Ary)

2 & 3a& & 38 14
1dp 23%1’1&4; 1 dho, 10—’“ w0 )
P& 3p & m%p& pdy p

vy vy 1 gy Lduy | Aa)
2 3 3y & 3a& O & 15
1dp 23p pd 190, 137, 7 _

2% ¥ 3p & pé& pd po& p

w can be expressed by:

— w, 2 w,

=b Al 16
w 2+3w2+2 (16)
z-Momentum equation:

ohw ohuw 10 vy w

T e Tealmt Ty

19 1ok, 1 hT,
6ay[hvl(wb w,)]- o p 8yy (17
Tbx &zb Tby aZb pl =0

p " pod p
Since the regular shallow water equations will be
used for comparison the equations are given here in
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the nonconservative form, as they are used in the
examples:

é.}i + ih.l.‘. +ahv =0

x x (18)
du i dw | dhtz) T
—t—t—tgh——+-E =0

& ¥ 0 & p 1
dv dw ht+z) T,

Iy Jw W ) T (20)
a & o %

3 DERIVATION OF THE MOMENT
EQUATIONS
The special weighting function

-2

F= ZT 21
corresponds to the first momentum about the mid-
depth point.

As an example, the derivation of the moment of
continuity equation is outlined.

Integration of the continuity equation (9) using
this weighting function (21) leads to

Zy+h Zy+h
J-[Bu&)&w _ (a;auaw —0e

&c+&y+-5£ -2 J ‘5;"'54‘5

The second integral in (22) describes the mean depth
multiplied with the depth averaged continuity
equation. Integration by parts and the Leibniz Rule
applied to the first integral term leads to:

2,+h
gx— J.zudz +z,u, %ExL— u,(z, + h)-(?-(—z—"—ji) +

ox
a pt+h 31 a z +h
b—y— z{zvdz +2z,v, == —v,(z, + h)_(_':?y——)
3h oh  ohu ohu Lo ohv -0
3t ox dy
Depth averaging of the integral terms and

introducing the kinematic conditions (7) and (8) in
the previous equation, results in the final ‘moment of
continuity’ equation:

da | hwy *_, ( B adu dw)_
-—-—+6y+(z,,+h) +2Ia+ac+&y
1oh* 1ok 13k, dz

+ —+hy -——h 023
a6 6o h““ vy =0@)

Applying the same procedure to the other Reynolds
equations (10-12) gives the ensuing equations



Moment of x-momentum equation:

all &Jou, alo a41 14 éy_‘l'___________
—+ +V, — V) —
& o

dy d 2hpd 2p &K
4, 32 60,3t 6T 32 6Te 3w
hp & hp o ‘hpay hp hp
Moment of y-momentum equation: a)

M My, N, M. pd 1ap

=2ty =L+ +
37y a kWY

ipdz 60,0z 6ty 6 3% _,

hpdy hpdy hpk hp hop

Moment of z-momentum equation:

wat In —  _ oz

B L R ()
o|Fu, d hzu,(— W, w,,)

3[_1?(% W")]J"ac[ 0" 33

- dz 9|y,
#(vow—%‘(%—%) @”5[‘?2‘)‘(‘”"“%)]“’ (26)

24)

(25)

hit, T
o) 2,
2lp p) 3
The mean value of the squared vertical velocity in
equation 26 can be expressed by

W2 =;V_2 + W +LV.L_M+
12 12 6 on
1, — 2
'2—6(2W'—Wb Wh)

4 SIMPLIFICATIONS FOR PRACTICAL USE

The vertically averaged normal and shear stresses
6.,0,,0,7,.T, and 7, are completely
neglected. For turbulent cases a closure model for
the turbulence would be required.

The friction terms 7, and 1, take the bed shear

into account. For the following calculations the
Manning-Strickler formula is used

2 2 =2
ﬂl_gu(ﬂ/uo +vy +Ww
p k*h%
where k[m)g /s] describes the friction factor
according to Strickl_er (k=1/n), with the Manning
friction factor n. The friction could also be modeled
using near bed velocities instead of the mean
velocities, but for the investigated cases friction was
of secondary importance. The implementation of

(28)
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vertical velocities is only of significance for steep
slopes of the water surface. For the 1d case Khan &
Steffler (1996) gave several examples using the
same approach.

5 NUMERICAL MODEL

The current code is based on the FEMTOOL (Finite
Element Method TOOLbox) package. This package
is a general PDE solver for steady, transient, linear
and nonlinear problems. It is described in more
detail in Rutschmann (1993,1994). The advantage of
the FEMTOOL package is the ease with which new
problems can be implemented. The user has only to
write the core of an element matrix routine as well a
an initialization and time variation routine. For the
element matrix routine this core consists of one line
of code for each variable and each equation,
Therefore for the standard 2D shallow water
equation nine different terms have to be constructed.

FEMTOOL usually works with a standard,
centered Galerkin method but uses space/time finite
elements. The order of the shape functions is not
limited by the package, but the order in space is
decoupled from the order of approximation in time.
There exists also the possibility of using different
order shape functions for different variables. Also
the scheme is not only capable of solving one time
slab in a fully implicit way but can also solve several
or all time slabs in one single fully implicit step.

For the current 2D program, linear finite
elements in both, space and time, are used. On the
level of the element matrix routine an upwind
weighting based on the approach of Katopodes
(1984) was introduced in order to reduce oscillations
in the neighborhood of shocks. It has to be
mentioned, that the upwind procedure is applied
only to the 3 basic shallow water equations, keeping
the number of additional terms as small as possible.
The ten equations are simultaneously solved in
nondimensional form. The nonlinearity of the
equations is resolved by using Picard iteration. The
convergence with this procedure is stable without
any underrelaxation, although it is slow.

6 EXAMPLES

The 2-dimensional set of equations is verified for the
transient dambreak problem using the same grid as
Jimenez & Chaudhry (1988) and compared with the
analytical solution.

The numerical simulation of supercritical flow
causes several problems. Shock waves, propagating
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Figure 5: Water depth of a subcritical Dambreak for
h/hy =0.5.

from each obstacle in the channel, are difficult to
handle with the FEM. Owing to the nondissipative
character of the Galerkin approximation, an upwind
scheme must be introduced.

6.1 Dambreak with subcritical flow

At the example of the one dimensional dambreak the
comparison of the shallow water equations with the
additional moment equations is demonstrated.

The problem is actually solved with the 2-d
equations as given in the previous chapters, although

it is basically one dimensional.
In Figure 5 the water depth of the subcritical

dambreak is displayed at a time of 60 sec. after the
sudden rupture. 80 linear elements of 25m length
and width are used and the introduced upwind
reduces spurious oscillations . The water depth ratio
was set to h/h, =0.5, with A =10m as the initial
upstream depth and h, the downstream depth. The
difference in the depth is insignificant. The size of
the other values is only shown for the supercritical
dambreak flow,

6.2 Dambreak with supercritical flow

Figure 6 describes the same problem but for a water
depth ratio of h/h, =0.05, i.e. for a supercritical
dambreak. The 3d plot shows the water depth after
30 sec. No upwind is used and the grid of the 4
elements wide and 80 elements long channel lays in
the diagonal, each element being 25m long and 50m
wide.
Due to some difficulties with the upwind, the
calculations in the diagonal direction of the
coordinate system are carried out without upwind.
For the same problem in axis direction the
calculations with upwind showed rather smooth
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Figure 6: 3d plot of the water depth of a supercritical
Dambreak for h/hy=0.05.

results. As can be seen in Figure 7c) and e) the
additional terms for the horizontal velocity uj, resp.
v; causes rather small deviations from the depth
averaged horizontal velocity terms uy and vy in
Figure 7b) and d).

The hydrostatic pressure distribution at the front
where the water depth decreases suddenly from 3.1m
to 0.5m, therefore is about 30 kN/m?, resp 5 kN/m?.
Compared to those values the additional pressure
terms p; and p, (Figure 7f) and g)) are small, they
amount up to about 10 % of the hydrostatic pressure.

Figure 7h) to j) show the different vertical

velocity terms. wy, is zero for the horizontal channel.
For the depression zone, extending in both directions
of the initial location of the dam at x=1000m, the
vertical velocity is about -0.1 m/s, ie. slightly
negative. The zone with constant water depth
between the shock front and the depression zone has
a negligible vertical velocity. At the front itself the
max. peak for the upwind calculation amounts up to
0.5 m/s. that means about 5-10 % of the depth
averaged horizontal velocity in flow direction.
The water depth in Figure 7 a) is compared with the
analytical solution of the same problem. The drag of
the front of the moment equations can be ascribed to
the nonconservative form of the shallow water
equations that are used.

6.3 Partial Dambreak

The problem of partial dambreak as investigated by
Fennema & Chaudhry (1989) and Chaudhry (1993)
is solved with the moment equations.

Instead of a grid with 40 x 40 elements, as used
for the original calculations, a grid with 20 x 20
linear elements is used, each element 10 by 10 m.
The 200 m long and 200 m wide channel has an
nonsymmetrical breach of 80 m width and 10 m
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Figure 7: Graph for the 2d- dambreak with h/hg=0.05
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7 CONCLUSIONS

It can be concluded, that for the overall behavior the
additional terms are not of importance. But as soon
as we are interested in local details, the insight given
by the moment equations is tremendously deepened.

Further investigations of reasonable examples
should be carried out. On the other hand
measurements in the front of dambreak waves are
missing.  Spillway  contractions or  similar
constructions can be easily tested with the simple 2d
grid. A comparison with the general 3d Navier-
Stokes equations could also be helpful.
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